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 ◌◌◌◌◌◌◌

Introduction
Anomalies are violations of symmetries.

Anomalies are powerful tools:

• information invariant under RG flow (UV–IR), ’t Hooft matching conditions;

• they obstruct gauging, constrain the spectrum of gauge theories

→ ABJ for the SM, String Theory, … .

Recently:

• continuous and discrete symmetries treated in the same way;

• higher‑form symmetries, the charged objects are strings, branes, etc.;

• non‑invertible symmetries.

Anomalies and symmetries → description–agnostic: e.g. quarks and gluons vs mesons

Note

In a UV‑complete theory with gravity, NO global symmetries:

→ e.g. charge falling into a black hole → current not conserved.
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⊛◌◌◌◌◌◌

Symmetries in Quantum Mechanics
A Symmetry is a transformation that:

• maps states ∈ ℙℋ into states ∈ ℙℋ;

→ (Wigner’s theorem) can be represented on

ℋ as an (anti–)unitary(∗) operator 𝑈̂ .

• does NOT act trivially on observables;

→ gauge redundancies: NOT symmetries!

• commutes with the Hamiltonian ∀𝜌 ∈ ℙℋ.

→ [𝑈̂ , 𝐻] = 0.

⇒
Observables: valued in linear,

faithful representations of the

group 𝐺.

𝐺: symmetry group of ℙℋ,

NOT of ℋ.

Example: Degenerate 𝑁–level system

ℋ = ℂ𝑁 ⇒ 𝐺 = 𝑈(𝑁) = 𝑈(𝑁)
𝒵(𝑈(𝑁))

= 𝑆𝑈(𝑁)
ℤ𝑁

In particular, for a qubit (𝑁 = 2) → symmetry group 𝐺 = 𝑆𝑂(3) = 𝑆𝑈(2)/ℤ2!

(∗) I will not discuss the anti-unitary case.
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●⊛◌◌◌◌◌

Continuous symmetries in Field Theory
Classically 𝜑(𝑥) ↦

𝜀
𝜑′(𝑥′) = ℱ[𝜑](𝑥) : infinitesimal transformation:

→ conserved current 𝐽 (𝜀)
𝜇 (𝑥) via Noether’s procedure;

→ conserved charge 𝑄 = ∫ d𝑑𝑥 𝐽 (𝜀)
0 = ∫

𝑡=𝑡0

⋆𝐽 (𝜀);

→ 𝑄 generates the infinitesimal transformation: 𝛿𝜀𝑂 = {𝑂, 𝑄}.

Quantum mechanically, {⋅, ⋅} ↦ [⋅, ⋅] (infinitesimal form of 𝑈𝑂𝑈−1).

𝐽 (𝜀) conservation is replaced by Ward identities.

Under boosts, a charge which lives at 𝑡 = const. acts at different times.

→ we need a covariant description.

Natural way: Euclidean signature and use

𝑄(ℳ𝐷−1) = ∫
ℳ𝐷−1

⋆𝐽 (𝜀)
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●●⊛◌◌◌◌

Symmetries and Defects
From Ward identities, charges are topological objects.

→ Symmetry ⇒ Topological operator

Generalizing:

Topological operator ⇔ Symmetry

→ A topological operator may NOT correspond

to a current (discrete symmetries)

Note

A topological object can be used as:

• an operator on ℋ, if it lives on a space–slice;

• a defect, that modifies the quantization, leading to a twisted Hilbert space ℋtwist.
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●●●⊛◌◌◌

Anomalies

System 𝒵 with 𝐺 symmetry group. Turn on a background gauge field 𝐴.

→ ’t Hooft anomaly if

𝒵[𝐴] ⟼
𝑔∈𝐺

exp(𝑖𝜔[𝐴, 𝑔]) ⋅ 𝒵[𝐴𝑔]

System 𝒵 with symmetry 𝐺1 × 𝐺2. Turn on a background gauge field 𝐴1.

→ mixed anomaly if

𝒵[𝐴1] ⟼
𝑔∈𝐺2

exp(𝑖𝜔[𝐴1, 𝑔]) ⋅ 𝒵[𝐴𝑔
1]

(in both cases, if 𝜔 NOT removable via local counter-terms in Δ𝑆[𝐴] in 𝐴)

Note

→ anomaly is invariant under RG–flow (see Adler–Bardeen theorem, Index theory).

→ if 𝒯UV has an anomaly, then 𝒯IR must have the same anomaly.
(The converse may not hold)
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Anomalies ●●●⊛◌◌◌

Example 0: Trivial Anomaly

ℋ = ℂ2 𝐻̂ = 𝜎3 𝑡 ∼ 𝑡 + 2𝜋 ∈ 𝑆1

𝐺 = 𝑆𝑂(2) → represented by 𝑈(𝛼) = 𝑒𝑖𝛼𝜎3
2 . Current: 𝐽0 = 𝜎3

2 .

Turn on background gauge field: 𝐴0(𝑡) = 𝛼
2𝜋

𝒵[𝐴] = tr[𝑒−2𝜋𝑖𝐻̂ exp(𝑖 ∫
2𝜋

0
𝐴0𝐽0 d𝑡)] = 2 cos(1

2
∫

2𝜋

0
d𝑡 𝐴0(𝑡))

Gauge transformation: 𝐴𝑔 = 𝐴 + 𝜕Λ𝑔 Let Λ𝑔(𝑡) = 𝑡:

𝒵[𝐴𝑔] = −𝒵[𝐴]

Is this an anomaly? No: we can redefine the charge (= add a local counter-term):

𝑈 ′(𝛼) = exp(𝑖𝛼𝜎3 + 𝟙
2

) → 𝒵′[𝐴𝑔] = 𝒵′[𝐴] = 2 cos(1
2

∫
2𝜋

0
d𝑡 𝐴0(𝑡))𝑒

𝑖
2 ∫2𝜋

0
d𝑡 𝐴0(𝑡)
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Anomalies ●●●⊛◌◌◌

Example 1: the Qubit

ℋ = ℂ2 𝐻̂ = 0 𝑡 ∼ 𝑡 + 2𝜋 ∈ 𝑆1

𝐺 = 𝑆𝑂(3) → represented by 𝑈(𝛼) = 𝑒𝑖𝛼𝑎 𝜎𝑎
2 . Currents: 𝐽 (𝑎)

0 = 𝜎𝑎

2 .

Turn on background gauge field 𝐴0 = 𝐴(3)
0

𝜎3

2 :

𝒵[𝐴] = tr[𝑒−2𝜋𝑖𝐻̂𝑈(∫
2𝜋

0
𝐴0(𝑡) d𝑡)] = 2 cos(𝛼

2
)

Gauge transformation: 𝐴𝑔 = Ω𝑔(𝐴 + 𝑖𝜕)Ω𝑔−1  Let Ω𝑔 = 𝑒𝑖𝑡𝜎3
2 :

𝒵[𝐴𝑔] = −𝒵[𝐴]

Maybe the anomaly is removable via a counter–term: 𝜎3

2 ↦ 𝜎3+𝟙
2 .

Let now Ωℎ = 𝑒𝑖𝜋𝜎1
2 : 𝒵′[𝐴ℎ] = 𝒵′[𝐴]𝑒−𝑖𝛼

We can move the phase, but we cannot remove it → 𝑆𝑂(3) has an anomaly!

(The anomaly lives in the subgroup < 𝑒𝑖𝜋𝜎1
2 , 𝑒𝑖𝜋𝜎2

2 >= ℤ2 × ℤ2 ⊂ 𝑆𝑂(3))
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Anomalies ●●●⊛◌◌◌

Example 2: the Critical Ising model — (1)

𝒵 = ∑
{conf.}

𝑒−𝛽𝐻[conf.] 𝐻 = −𝐽 ∑
⟨𝑖𝑗⟩

𝜎𝑖𝜎𝑗

There is a 𝐺 = ℤ2 global symmetry: 𝜎𝑖 ↦ −𝜎𝑖

→ (𝐷 − 1)–dimensional topological defect 𝜂[𝛾]

𝒵[𝜂] = ∑
{conf.}

𝜂 𝑒−𝛽𝐻[conf.]

= 𝒵[𝟙]

→ selection rules

⟨𝜎𝜎𝜎⟩ = −⟨𝜎𝜎𝜎⟩ = 0
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Anomalies ●●●⊛◌◌◌

Example 2: the Critical Ising model — (2)

𝐷 = 2 𝑚 = 3, 𝑐 = 1
2

Three primaries:

𝟙(0, 0) 𝜀(1
2 , 1

2) 𝜎( 1
16 ,

1
16)

[𝜇( 1
16 ,

1
16) in twisted sector]

Fusion rules: 
[𝜎][𝜎] = [𝟙] + [𝜀]

[𝜎][𝜀] = [𝜎]
[𝜀][𝜀] = [𝟙]

Tr[𝒪 𝑞𝐿0− 𝑐
24 𝑞𝐿0− 𝑐

24 ] = 𝜆0 |𝜒0(𝜏)|2 + 𝜆1
2

|𝜒1
2
(𝜏)|2 + 𝜆 1

16
|𝜒 1

16
(𝜏)|2

= ∑𝑖,𝑗 𝑛𝑖𝑗𝜒𝑖(−1
𝜏 )𝜒𝑗(−1

𝜏 )

→

𝜆0 𝜆1
2

𝜆 1
16

1 1 1 1
η (ℤ2) 1 1 −1
𝒟 (KW)

√
2 −

√
2 0

→

𝒪|𝑖⟩ = 𝜆𝑖
𝒪

|𝑖⟩

𝒟 ⋅𝒟 = 1+ η

𝒟 ⋅ η = 𝒟

η ⋅ η = 1

→

New selection rule: 𝒟 → ⟨𝜀𝜀𝜀⟩ = −⟨𝜀𝜀𝜀⟩ = 0
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●●●●⊛◌◌

Non-invertible symmetries
Usual invertible symmetry 𝐺:

𝒟𝑔(Σ) ×𝒟𝑔′(Σ) = 𝒟𝑔𝑔′(Σ), 𝒟𝑔(Σ) ×𝒟𝑔−1(Σ) = 𝟙

We can also define sum of defects:

⟨(𝒟1 +𝒟2)(⋅)⟩ = ⟨𝒟1(⋅)⟩ + ⟨𝒟2(⋅)⟩ → ℋ1+2 = ℋ1 ⊕ℋ2

Note

We can take 𝑘𝒟1 + 𝑞𝒟2 with 𝑘, 𝑞 ∈ ℕ, but NOT 𝒟1 −𝒟2, 1
7𝒟1!

Ordinary global symmetry ⇒ Topological defect.

What about ⇐? It does not hold in general:

𝒟𝑖 ×𝒟𝑗 = ∑
𝑘

𝑁𝑘
𝑖𝑗𝒟𝑘, 𝑁𝑘

𝑖𝑗 ∈ ℕ

[e.g. Critical Ising: 𝒟×𝒟 = 1 + η]
→ Fusion rules are NOT group–like!
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Non-invertible symmetries ●●●●⊛◌◌

Example 3: XY model — (1)

𝐻̂ = ∑
𝑖

[𝑈
2

Π2
𝑖 + 𝐽

2
(Φ𝑖+1 − Φ𝑖 − 2𝜋 𝑛𝑖,𝑖+1)

2 − 𝑔 cos(𝐸𝑖,𝑖+1)]

[Φ𝑖, Π𝑗] = 𝑖𝛿𝑖,𝑗 [𝑛𝑖,𝑖+1, 𝐸𝑗,𝑗+1] = 𝑖𝛿𝑖,𝑗

𝐺UV = 𝑈(1)m ⋊ ℤ2: 𝑄m = ∑𝑖 Π𝑖 ℤ2 : Φ ↦ −Φ, 𝑛 ↦ −𝑛.

But with fine–tuning: 𝑔 = 0 → 𝑄w = − ∑𝑖 𝑛𝑖,𝑖+1 → 𝐺UV = 𝑈(1)m × 𝑼(𝟏)𝐰 ⋊ ℤ2

→ There is a mixed anomaly between 𝑈(1)m and 𝑈(1)w.

Ansatz of IR theory: Compact Boson: 𝐺IR = 𝑈(1)m × 𝑈(1)w ⋊ ℤR
2  with mixed anomaly.

Matching coefficients: 
𝐽
𝑈

= 𝑅4

4𝜋2ℓ4
𝑠

+ … 𝐸𝑖 = 𝜃(𝑥)

ℒ = 𝑅2

4𝜋ℓ2
𝑠
(𝜕𝜇𝜑)2 = 1

2𝜋
𝜕𝑡𝜑 𝜕𝑥𝜃 − 1

4𝜋
[ ℓ2

𝑠
𝑅2 (𝜕𝑥𝜃)2 + 𝑅2

ℓ2
𝑠

(𝜕𝑥𝜑)2] = ℓ2
𝑠

4𝜋𝑅2 (𝜕𝜇𝜃)2

[𝜑 ∼ 𝜑 + 2𝜋, 𝜃 ∼ 𝜃 + 2𝜋]
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Non-invertible symmetries ●●●●⊛◌◌

Example 3: XY model — (2)

ℒ = ℓ2
𝑠

4𝜋𝑅2 (𝜕𝜇𝜃)2 + 𝑔 cos 𝜃 [𝜑 ∼ 𝜑 + 2𝜋, 𝜃 ∼ 𝜃 + 2𝜋]

The theory flows to the Compact Boson?

→ If 𝑈(1)w imposed with fine tuning (𝑔 = 0)

→ If 𝑈(1)w–charged objects are irrelevant

If 𝑔 = 0, conformal symmetry →

{{
{{
{{
{

𝐿0 = 1
4(ℓ𝑠

𝑅 𝑄m + 𝑅
ℓ𝑠

𝑄w)
2

+ osc...

𝐿0 = 1
4(ℓ𝑠

𝑅 𝑄m − 𝑅
ℓ𝑠

𝑄w)
2

+ osc...

Δ = 𝐿0 + 𝐿0 =

= 1
2
(ℓ𝑠

𝑅
𝑄m)

2

+ 1
2
(𝑅

ℓ𝑠
𝑄w)

2

+ osc...

cos 𝜃 relevant ⇔  Δ̂ cos 𝜃 < 2 ⇔  𝑅/ℓ𝑠 < 2 ⇔  𝐽/𝑈 ≲ 0.4  BKT transition

( cos 𝜃 irrelevant ⇒ 𝑈(1)w anomaly ⇒ no trivial ground state )
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Non-invertible symmetries ●●●●⊛◌◌

Example 4: ABJ Anomaly — massless QED

ℒ = 𝑖Ψ𝜕Ψ → ℒ = 𝑖Ψ𝒟Ψ − 1
4𝑒2 𝐹𝜇𝜈𝐹𝜇𝜈

Symmetries:
Vectorial 𝑈(1)V

{Ψ ↦ (𝑒+𝑖ΛV)Ψ
Ψ ↦ Ψ(𝑒−𝑖ΛV)

𝐽 (V)
𝜇 = −Ψ𝛾𝜇Ψ

Axial 𝑈(1)A

{Ψ ↦ (𝑒+𝑖ΛA𝛾5)Ψ
Ψ ↦ Ψ(𝑒+𝑖ΛA𝛾5)

𝐽 (A)
𝜇 = −Ψ𝛾𝜇𝛾5Ψ

After the 𝑈(1)V–gauging:

⟨𝜕𝜇𝐽 (𝐴)𝜇⟩ = = − 1
𝒵

∫ 𝛿(𝒟Ψ𝒟Ψ)𝑒𝑖𝒮 = [ℏ]
16𝜋2 𝜀𝜇𝜈𝜌𝜎𝐹𝜇𝜈𝐹𝜌𝜎

= 𝜕𝜇[ 1
8𝜋2 𝜀𝜇𝜈𝜌𝜎𝐴𝜈𝐹𝜌𝜎] local but NOT gauge-invariant!
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Non-invertible symmetries ●●●●⊛◌◌

Example 5: SM & Non–Abelian Anomalies
Higgs field: 𝐻 = (Φ+

Φ0), with ⟨𝐻⟩ = (0
𝑣),  𝑣 ∈ ℝ+

Chiral Fermions:

(× 3 families)

• leptons (𝜈𝑒
𝑒 )

𝐿
, 𝑒𝑐

𝐿

• quark (𝑢
𝑑)

𝛼

𝐿
, 𝑢𝑐,𝛼

𝐿 , 𝑑𝑐,𝛼
𝐿 𝛼 = 1, 2, 3

Symmetries: 𝐺SM = 𝑈(1)Y × 𝑆𝑈(2)w × 𝑆𝑈(3)s

We want to gauge 𝐺SM → 𝐺 must NOT have anomalies.

Non–Abelian anomalies → Gauge invariance: no triangle ⇒ no anomaly (∀ family)
(Wess–Zumino consistency conditions determine the rest)

(𝑌 3) : [2 ⋅ (−1
2)⏟

(𝝂,𝒆)𝑳

3 +
⏟
𝒆𝒄

𝑳

(1)3 + 6 ⋅ (1
6)⏟

(𝒖,𝒅)𝜶
𝑳

3 + 3 ⋅ (−2
3)⏟

𝒖𝒄
𝑳

3 + 3 ⋅ (1
3)⏟

𝒅𝒄
𝑳

3] = 0

([𝑆𝑈(2)]2𝑌 ) : 2 ⋅ [(−1
2)⏟

(𝝂,𝒆)𝑳

+ 3 ⋅ (1
6)⏟

(𝒖,𝒅)𝑳

] = 0 ([𝑆𝑈(3)]2𝑌 ) : 3 ⋅ [2 ⋅ (1
6)⏟

(𝒖,𝒅)𝑳

+ (−2
3)⏟

𝒖𝒄
𝑳

+ (1
3)⏟

𝒅𝒄
𝑳

] = 0

SM must be consistent with perturbative GR → also mixed grav. anomaly must be zero:

(𝑇 2𝑌 ) : [2 ⋅ (−1
2)⏟

(𝝂,𝒆)𝑳

+
⏟
𝒆𝒄

𝑳

(1) + 6 ⋅ (1
6)⏟

(𝒖,𝒅)𝑳

+ 3 ⋅ (−2
3)⏟

𝒖𝒄
𝑳

+ 3 ⋅ (1
3)⏟

𝒅𝒄
𝑳

] = 0
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●●●●●⊛◌

Higher Form Symmetries
Ordinary (0–form) symmetry: (𝐷 − 1)–topological op. ⮎ pointlike op.
𝑝–form symmetry: (𝐷 − 𝑝 − 1)–topological op. ⮎ 𝑝–op.

They are Abelian

Example: Yang–Mills phase diagram from Wilson Loop

Wilson loop 𝒲𝑛[𝛾] = tr[𝒫 exp(𝑖𝑛 ∫
𝛾

𝐴 ⋅ d𝛾)]

→ Area Law: ⟨𝒲𝑛⟩ ∼ 𝑒−𝐴 ∼ 0 → unbroken phase → confinement (𝑉 ≳ 𝑟)

→ Perimeter Law: ⟨𝒲𝑛⟩ ∼ 𝑒−𝑃 ≁ 0 → broken phase → 𝑉 ∼ const. → Higgs phase

→ Coulomb Law: ⟨𝒲𝑛⟩ > 𝑒−𝑃 ≁ 0 → broken phase → 𝑉 ≲ 1
𝑟  → Coulomb phase
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Higher Form Symmetries ●●●●●⊛◌

Example 6: Maxwell theory in 𝐷 = 4

Without matter: two 𝑈(1)(1) symmetries:

Electric 2–form current

𝐽e = 2
𝑒2 ⋆𝐹

⮎ Wilson line 𝒲 = 𝒫𝑒𝑖𝑛 ∫
𝛾

𝐴

Magnetic 2–form current

𝐽m = 1
2𝜋

𝐹

⮎ ’t Hooft line 𝒯 = 𝒫𝑒𝑖𝑛 ∫
𝛾

𝐴̃

With 𝑛–charged matter field: 𝑈(1)e ↦ ℤ𝑛

→ They have a mixed ’t Hooft anomaly:

1
2𝜋

∫⋆𝐵m ∧𝐹 → ⋆𝐽 = 1
2𝜋

d⋆𝐵m → d𝐽 e = 1
2𝜋

d⋆𝐵m

Both symmetries are spontaneously broken: ⟨𝒲⟩ and ⟨𝒯⟩ follows Coulomb law.

→ The Goldstone boson is the photon:

⟨0|𝐽𝜇𝜈
e (𝑥)|𝜖, 𝑝⟩ = (𝜖𝜇𝑝𝜈 − 𝜖𝜈𝑝𝜇)𝑒𝑖𝑝𝑥
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Higher Form Symmetries ●●●●●⊛◌

Example 7: Non–Abelian Gauge theories

Higher–form symmetries tell us about the global structure of the group.

As in the abelian case

→ Electric 1–form symmetry ⮎ Wilson lines

→ Magnetic 1–form symmetry ⮎ ’t Hooft lines

But we cannot use all Wilson and ’t Hooft lines: GNO quantization (∼ Dirac quant.)

𝑚⃗ ⋅ ⃗𝜇 = 2𝜋ℤ

Two significant cases with 𝔰𝔲(𝑁) algebra:

𝐺 = 𝑆𝑈(𝑁) → 𝐺(1)
e = ℤ𝑁 and 𝐺(1)

m = 𝟙

𝐺 = ℙ𝑆𝑈(𝑁) = 𝑆𝑈(𝑁)/ℤ𝑁 → 𝐺(1)
e = 𝟙 and 𝐺(1)

m = ℤ𝑁
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Conclusions

Anomalies and Generalized Symmetries are features of the theory.

Anomalies:

• RG invariant

• obstruct gaugings

• constrain spectra

Generalized Symmetries:

• phase transitions via new order parameters

• can have anomalies

• can be gauged

They establish connections among various disciplines:

• Mathematics (Index theory, algebraic topology and category theory)

• String Theory and Conformal Field Theories

• Condensed Matter Physics
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Defects, Twisted b.c., Flat Connections

Example: complex boson on the circle (𝑥 ∼ 𝑥 + 2𝜋)

ℒ = 𝑔
4𝜋

𝜕𝜇Φ†𝜕𝜇Φ ℋ = 𝜋
4𝑔

|Π|2 + 𝑔
4𝜋

|𝜕𝑥Φ|2

→ Φ(𝑥, 𝑡) = ∑
𝑛≠0

1
√2𝑔𝐸𝑛

{𝑎𝑛𝑒𝑖𝑛(𝑥−𝑡) + 𝑏†
𝑛𝑒−𝑖𝑛(𝑥+𝑡)} + Φ̇0𝑡 𝐸𝑛 = |𝑛|, 𝑛 ∈ ℤ

→ twisted boundary conditions

Φ(𝑥 + 2𝜋) = 𝑒𝑖𝜃Φ(𝑥) → 𝐸𝑛 = |𝑛| 𝑛(𝑎) ∈ ℤ + 𝜃
2𝜋

𝑛(𝑏) ∈ ℤ − 𝜃
2𝜋

→ flat background gauge field

𝐴𝜇 = (0, 𝜃
2𝜋

) → 𝑛 ∈ ℤ 𝐸(𝑎)
𝑛 = |𝑛 − 𝐴𝑥| 𝐸(𝑏)

𝑛 = |𝑛 + 𝐴𝑥|

→ topological defect

𝐽𝜇 = 𝑖(Π𝜇Φ − Π†
𝜇Φ†), ⟨(⋅)𝑒𝑖𝜃 ∫ d𝑡 𝐽𝑥⟩ = ∫𝒟Φ𝒟Φ†(⋅)𝑒𝑖 ∫ℒeff ℒeff = ℒ0 + 𝜃 𝛿(𝑥)𝐽𝑥

Twisted boundary conditions ⇔ Flat background gauge field ⇔ Topological defect
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Higher Form Symmetries — Comparison

Ordinary (0–form) symmetries Extension to 𝑝–form symmetries

Currents (1–forms):

𝐽 = 𝐽𝜇 d𝑥𝜇

Higher-spin currents ((𝑝 + 1)–forms):

𝐽 = 1
𝑝!𝐽𝜇1…𝜇𝑝−1

d𝑥𝜇1 ∧…∧d𝑥𝜇𝑝−1

→

Charges: 𝑄(Σ𝐷−𝑝) = ∫
Σ𝐷−𝑝

d⋆𝐽 (𝑝+1) = ∫
𝜕Σ𝐷−𝑝

⋆𝐽 (𝑝+1)

Ward Identities:
⟨𝑄(𝜕Σ𝐷−𝑝)𝑂[Τ𝑝]⟩ = −𝑖 Link(𝜕Σ𝐷−𝑝, Τ𝑝)⟨𝛿𝑂[Τ]⟩

⟨𝑈𝑔(𝜕Σ𝐷−𝑝)𝑂[Τ𝑝]⟩ = ℛ(𝑔Link(𝜕Σ𝐷−𝑝,Τ𝑝))⟨𝑂[Τ𝑝]⟩

Continuous formulation:

→ Transformation parameter: 𝜉𝑝 with d𝜉 = 0 𝛿𝒮 = ∫ 1
𝑝!𝐽𝜇1…𝜇𝑝

d𝜉𝜇1…𝜇𝑝

→ Equation of the motion: d⋆𝐽 = 0

→ Poincaré dual: Σ𝐷−𝑝−1 ↦ 𝜉𝑝 closed form → ⟨𝑄(𝜉)𝒪𝑝(ℳ)⟩ = −𝑖 ∫
ℳ

𝜉 ⋅ ⟨𝛿𝑂⟩
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