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Abstract: The aim of this report is to study the low temperature behavior of an harmonic
oscillator with 2# perturbation, focusing in particular on its thermodynamic properties and first
few energy gaps. Single site, single cluster and multi-cluster update algorithms are presented

and compared.

1. INTRODUCTION

The system of interest of this report is a single quantum
harmonic oscillator, with an anharmonic z* perturbation.
We focus on thermodynamical properties and energy gaps
of such system in the so called Gibbs thermal state, which
is a statistical mixture of Hamiltonian eigenstates so that
the density matrix p corresponds to a Boltzmann distri-
bution:

H= e mta s gat
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p = 7tz - exp|—BH],

where Z(f) is the partition function.

The discussion is organized as follows:

e in Section 2 we briefly summarize the procedures,
choices and conventions used for the simulations;

e in Section 3 we present the statistical and fitting
methods used to analyze the numerical simulations;

e in Section 4 we show and comment on the obtained
results.

All used codes are available at our repository on
GitHub [1].

2. METHODS OF INVESTIGATION
2.1 Units

Throughout the document, we set the Boltzmann con-
stant kg = 1. Also, energy is measured in units of the
harmonic oscillator gap, therefore h w = 1. Finally, length
are expressed in units of harmonic oscillator characteristic
length, hence % =1

2.2 Path integral and discretization

In order to investigate the wanted properties, we rely on
Monte Carlo simulation to obtain the values of correlators
with the Path Integral technique. Standard arguments
imply that given the system’s (Euclidian) Hamiltonian

density H, the respective Euclidian action Sg, and an
observable O depending on the position operator only, the
following relations hold:
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and
(0) = t2[0 - p] =
:L~ z(T z(7)) exp|—Sg|z(T 3)
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z(0)=z(B)
which is the path integral representation of an expected
value. It is clear how the term % exp[—Sg]| can be inter-

preted as a probability density function; we can discretize
the integrals introducing a time step a = &, getting:
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which is to be sampled for our investigation.

To this end, we build three different Markov Chains,
briefly described in Section 2.3 and Section 2.4; each one
will produce, at each iteration, a new path (zg, ..., Zn_1),
which will be referred to as state of the Markov chain.
We point out that the algorithms are of the Metropolis—
Hastings type, and they are only different in how the trial
state is chosen.

P(:EO,...,.’EN71 = .’130) =

2.3 Single site update

With this first Markov chain, the initial and trial state
only differ by one point of the discretized path. Given its
index ¢*, and the current state v = (1, ..., Tje, .., Ty_1)s
the trial state becomes

w=(Tg,ey, Tjr + 0, .., Tn_1) (5)
were the innovation é must be extracted form a proba-
bility density function g(d |v,¢*). Finally the trial state
can be accepted with probability

p (w))
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Calling D? the discrete Laplacian, we observe:

Plw) = exp [—(avd —B,)° + B2 —agz,.0° — a4_g64],

P(v)
\/7 \/—+1+3gx1*, ()
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We point out that the two coefficients «,, B, defined
above actually depend on initial state and the site that
could be updated, but we will only index them with the
former for notation clarity.

At this point, the better g(d | v,3*)/g(—d | w, ¢*) resembles
P(v)/P(w), the closer the acceptance probability will be
to one.
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We also take into account that we need to sample g(d | v)
for every simulation update, therefore a good choice of
this distribution is the gaussian in (8), which returns a
decent acceptance probability and is easy to sample via
the Box—Miiller algorithm:

g(8|v,i%) = \/g a, - exp|—(a, 0+ B)]. (8)

Significant features of this choice include that the drift
term —f, /v, is mean-reverting and the farther the initial
state will be from the mean (zero), the lower the variance
1/(2a2) will be.

This choice leads to an acceptance rate of the updates of
> 99.5%.

This algorithm is very parallelizable, so we implemented
it with CUDA. At each update, we randomly extract the
parity of the firsts sites to update. So we update all sites
with that parity and later the sites with the opposite one,
in order to avoid data-race conditions.

2.4 Cluster update

This algorithm is a generalization of the Wolff algorithm,
not based on any symmetry of the system.

Instead of modifying one site per step, we build a cluster
of adjacent sites, then change every site in it of the same
quantity 8. Section 2.4.1 and Section 2.4.2 give an outline
of the algorithm, then all probabilities and parameters
are made explicit and discussed in detail in Section 2.4.3.

Cluster building

The basic idea is to start from a randomly selected site
1*, then append neighbors to the cluster with probability
Padd(Axneigh), which only depends on the kinetic energy
contribution Az, = Tyeien — T+, a8 We show in the
pseudo-code snippet below:

>

1 cluster[0] = i* first cluster’s site

2] =1 cluster’s length; k& = 0 counter

3while k < I:

for i first neighbor of cluster[k]

if i ¢ cluster

append ¢ with probability P,y (z; —
l—1+1

k—k+1

‘Tcluster[k])
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Innovation sampling

Given the cluster C = (m, ..., M), of size Np, we extract
an innovation § from a probability density function
g(d|v,C), so that the trial state will be

W= (Tgy ey Ty + 0y ey Tpp + 0, e, Ty_1)- (9)

We remark that the entire kinetic energy change from
initial to final state are due z,,, and z;; updates, and so
that we can write the probability of building the cluster
C starting from v as

Rua(Clv) = B,(C,v) -
1= Baa(lzm — Zm_1l)] - (10)
1= Raa(lzns — zaral)]s
where B, only depends on the relative distances inside

the cluster and it’s invariant under a global shift of the
cluster (and so B,(C,v) = B,(C,w)).

Probability tuning
As before, we aim to maximize the acceptance probability

) C)-B_.4(C - P
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9(6]v,C) - Ry (Clv) - P(v)

by choosing the appropriate g(6|v,C) and B4q(AZeig)-

One can verify that an acceptable choice for these is:

Aw2ei

for a suitable choice of 7. Moreover, for the g function,
we can choose

-
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where:

o the parameter ~ is free to vary in the range (0,1),
and controls the average size of clusters, in addition to
setting a maximum Az, that can be accepted;

I, x2 23 are meant as averages within the cluster.

In comparison to the single site update, we remark that
now the drift term in the innovation pdf is independent of
the kinetic energy variation, as that has been taken into
account by P4q4.

In our case, we chose 7 in order to have the average cluster
size of about VN, with N the total number of sites in the
simulation. We can reach this goal observing that Az is
approximately distributed as

—Az?/2a
)

xe (14)

so, roughly, A:rtyp ~ 4/2a; it follows than that we approx-
imately want

N-<1—%)~x/ﬁ,

that can be used for an estimate of ~.

(15)



We implemented this algorithm both with single cluster
update, completely running on CPU and written in plain
C++, and multi—cluster update with CUDA, GPU paral-
lelized.

In the latter case, we first building the clusters as in the
single cluster algorithm. In order to do that, on each site,
a thread compute if the next site is in the same cluster of
its. Then, in order to avoid data—race conditions, in the
graph that has the cluster as vertex and the interaction
as edges, we color this graph and we update one color at
a time.

Our parameters leads to an update acceptance ratio of
5%—30% for the multi-cluster update and 60%— 90%
for the single-cluster update.

All GPU simulations run on a NVIDIA GTX 1650.

As far as the random number generator is concerned, we
use PCG32 [2], which is high-quality and high-speed.

3. DATA ANALYSIS

Having algorithms that sample the path distribution, we
now focus on how to find energy gaps and their uncer-
tainties. Our estimate of energy gaps fully relies on solving
the following generalized eigenvalue problem (GEVP):

C(t+ m)v = AC(t)v, (16)
where C(t) is the connected correlator matrix at lag ¢:

Gij(8) = (0;(1)0;(0)) — (O:)(0;). (17)

J J
We only make use of observables that depend on the
position operator, since the vectors £"|0) span all the
Hilbert space of the states; given a state s of the path and
an operator O(z), our sample is:

o 1 N-1
Os = N ; O(xs,i)a

whereas our estimator for it’s mean value (O), given N,
the (independent) samples number, will be:

1
0= A Z 0,..
n=1
In particular, for each update, we computed the following
observables:
o the first four powers of x, averaged along the path:

O, =2 i=1,..,4

e the raw correlator between those powers O;(t)0;(0).

(18)

(19)

In Section 3.1 and Section 3.3 we briefly describe how we
compute statistical uncertainties, in Section 3.2 how we
use the GEVP (16) to find the first four energy gaps, and
finally in Section 3.4 we explain how to reach an arbitrary
target precision.

3.1 Statistical errors on correlators

Firstly, we remark that the correlators matrix C;;(t) is a
secondary observable, for it depends on the primary ob-

servables (0;), (O;) and (O;(t)0;(0)). In order to compute

the appropriate uncertainties, we rely on standard first

order error propagation, using the following procedure:

1. starting from raw samples of primary observables, we
block data to eliminate correlations due to the Markov
Chain. Note that the number of samples reduces to
N

2. we compute sample covariance between the primary
observables;

3. we use the first order error propagation formula (using
Einstein notation):

af, of
covlfi f;] = ail s,

(20)

-cov|zy, z,,]-
m

3.2 Finding energy gaps

With regard to (17), in the low temperature limit', the
correlator takes the form:
+00
Cyi(t) = (0[0;[n) (n|O;]0)e~t(En=Eo),

n=1

(21)

Then in the large ¢ limit (see below for clarification), we
neglect contribution over the fourth gap, and call Cj;(t)
the truncated correlator.

The solution to (16), with the C” instead of C, is ezactly:

A (1) = exp[—7(E, — Ey)], (22)
which can be inverted to find gaps. These approximations
introduce the following systematic errors*:

e finite 8 introduces an error on each entry of the corre-
lators’ matrix:

Ci;(t) ~ C’ij + O(€_B<E1_EO)>; (23)

o finite ¢ introduces an error on the correlators’ matrix
entries:

Ciy(t) = G0 [L+ O (e BB}, (24)

where we call E, is the first not sampled energy level
that has the same parity® as n;

« due to the presence of further states in the sampled C,
the running of A, with 7 is not exactly exponential.
This induces a correction in the computation of the
eigenvalues whose dominant component scales with

e T (Ep=En), (25)
3.8 Statistical uncertainties on energy gaps

In order to estimate statistical uncertainties on the GEVP
solutions, we use Eq. (20), computing derivatives via the
Hellmann—Feynman theorem. Let A, v solve Eq. (16), and
let G, = Cj;(t + kr) with k=0,1. Then the theorem
states that:

oA <”‘ ac; [Cijo — ACija] ‘“>

— . 26
5C,r lC o) (26

! B — 400 quantities will be indicated with a tilde.

2 As discussed below, for the Hellmann—Feynman theorem, the error of the eigenvalue is proportional to the error of the matrices

entries, so we will interchangeably use these notions.

3 The symmetry & — —z induces a selection rule that make negligible contributions to the correlators of negative parity.



3.4 Parameter tuning

We set n and 7,, the target relative errors respectively
due to systematic and statistical errors. We are particu-
larly interested in assuring them to be reached on our
fourth gap estimate, which presents the smallest signal
and is the most sensitive to systematic errors by means
of Eqq. (25) and (22). Firstly, we ask that both errors in
Eqq. (25) and (24) are less than 7 and that the finite 8
in Eq. (23) is negligible (< 7/10):

TNt2M7
124 - 126

- 1n(77/10)'
T E,—-E;

(27)
B

Secondly, taking into account that statistical errors on A
are proportional to the ones on C, we ask the fourth gap
signal to be greater than the noise, getting:

t < ln(nstat)

. 28
An important remark is that we're asking:
Mooy S € FaF) < BB < g, (29)

hence the statistical error will be negligible with respect
to the systematic one.

3.5 Discretization effects

The discreteness of the path must be taken into account as
well. For each value of the coupling parameter, we perform
multiple simulations varying the time step parameter a,
and use a quadratic fit on the energy gaps to estimate
their value in the continuum limit as shown in . For this
fit, only statistical uncertainties are taken into account.
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Fig. 1. Quadratic fit of the energy gaps for a simulation
performed with single site update algorithm and coupling
parameter g = 7.84

4. RESULTS

We finally present the result of our simulations. We used
a relative error of 30% for the multi-cluster update algo-

rithm, and 1% for the single site and single cluster update.
As a comparison, we computed the gaps with a first order
Perturbative—Variational approach, well explained in [3].

In conclusion, we see a good agreement between simula-
tions and the Perturbative—Variational estimate of the

energy gaps.

We are confident that great performance improvements
can be obtained using a more suitable GPU (or higher di-
mensionality simulations) for the multi—cluster algorithm.
However, single site update seems to stay the best option
for its cleanness and overall performance.
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Fig. 2. Energy gaps varying the coupling parameter g, computed with all three different algorithms: single site (top
left), single cluster (top right), multi-cluster (bottom). The dotted lines are the gaps computed with the Perturbative-
Variational method.
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Fig. 3. Energy gaps varying the coupling parameter g, using Wolff algorithm after retuning ~.
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Fig. 4. Frequency of p-values from Kolmogorov-Smirnov test, comparing sample distribution (for all observables) of
single cluster (left) and multi-cluster (right) to metropolis.
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